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What is DL? A
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What is DL? MW

o Subset of ML that is essentially neural networks with more layers

o Crude attempt to imitate the humam brain in learning
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Classical ML vs. DL W

o Classical ML: Handcrafted features + learnable model

o Need strong domain expertise
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Classical ML vs. DL T

o Classical ML: Handcrafted features + learnable model

o Need strong domain expertise

Machine Learning
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Input Feature extraction Classification Output

Figure credits: Jay Shaw & Quora
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Classical ML vs. DL

o Deep Learning: Deep stack of parameterized processing

o End-to-End learning
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Classical ML vs. DL i il i

o Deep Learning: Deep stack of parameterized processing
o End-to-End learning
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Input Feature extraction + Classification Output

Figure credits: Jay Shaw & Quora
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Classical ML vs. DL

o ANNs predate some of the classical ML techniques

o We are now dealing with a new generation ANNs
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Neuron o
o About 100 billion neurons in human brain

Cell body

Synaptic terminals

Endoplasmic

/ Dendritic branches

Figure credits: Wikipedia
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History of Neural Networks

@ McCulloch Pitts neuron (1943) - Threshold Logic Unit
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History of Neural Networks Im

@ McCulloch Pitts neuron (1943) - Threshold Logic Unit
Donald Hebb (1949) - Hebbian Learning Principle

@ Marvin Minsky (1951) - created the first ANN (Hebbian Learning, 40
neurons)

@ Frank Rosenblatt (1958) - created perceptron to classify 20X20
images

® David H Hubel and Torsten Wiesel (1959) demonstrated orientation
selectivity and columnar organization in cat’s visual cortex
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Backpropagation o )

o Paul Werbos (1982) proposed back-propagation for ANNs
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History (contd.) pui g
@ Neocognitron by Fukushima (1980)
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History (contd.) RReA
@ Neocognitron by Fukushima (1980)
@ Implements the Hubel and Wiesel's principles
@ Used for hand-written digit recognition

@ Viewed as precursor for the modern CNNs
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History (contd.) T

@ Network for TC problem

Output
Unit

Hidden
Units

Input
Units
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@ Network for TC problem
@ Rumelhart (1988) trained with backprop
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History (contd.) bang

@ Network for TC problem
@ Rumelhart (1988) trained with backprop
@ Showed that hidden units learn meaningful representations

Output
Unit

Hidden
Units

Input
Units
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History (contd.)

@ LeNet family (Lecun et al. 1989) is a “convent”

10 output units

777777777 fully connected
~ 300 links
layer H3

30 hidden units fully connected
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256 input units
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History (contd.)

@ LeNet family (Lecun et al. 1989) is a “convent”

@ Very similar to modern architectures
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10 output units - [ g
fully connected

~ 300 links

layer H3

30 hidden units fully connected

~ 6000 links
layer H2

12 x 16=192 . 4 .

hidden units ’ 40,000 links
rom 12 kernels
5x5x8

layer H1

12 x 64 = 768

hidden units

H1.1
~20,000 links
from 12 kernels

256 input units
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History (contd.)

@ AlexNet (2012)
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History (contd.) Iy

@ AlexNet (2012)

@ Network similar to LeNet5, but of far greater size

nas' 2088 \dense
s I ensd

@ Implemented using GPUs
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History (contd.) bang

@ AlexNet (2012)

@ Network similar to LeNet5, but of far greater size

@ Implemented using GPUs

@ Could beat the SoTA image classification methods by a large margin
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History (contd.) bang

@ AlexNet initiated a trend of more complex and bigger architectures
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History (contd.)

@ AlexNet initiated a trend of more complex and bigger architectures
@ GoogleNet (2015) contains “inception” modules

@ ResNet (2015) introduced “skip connections” that facilitate training
deeper architectures
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History (contd.)

@ Transformers (2017) are attention-based architectures
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Figure credits: Vaswani et al., 2017
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History (contd.)

@ Transformers (2017) are attention-based architectures

@ Very popular in NLP, and CV
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History (contd.)
@ Transformers (2017) are attention-based architectures

@ Very popular in NLP, and CV

@ Some of these models are extremely large. GPT-3 has 3 billion
parameters (Brown et al. 2020)
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Figure credits: Vaswani et al., 2017
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Deep Learning W

@ Natural generalization to ANNs - Doesn't differ much from the 90s
NNs
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Deep Learning

@ Natural generalization to ANNs - Doesn't differ much from the 90s
NNs

@ Computational graph of tensor operations that take advantage of
Chain rule (back-propagation)

SGD

GPUs

Huge datasets

Convolutions, etc.
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Deep Learning W

o This generalization enables us to build complex networks that work
with Images, text, speech and sequences and train end-to-end
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ILSVRC Error

Human performance
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Figure credits: Gershgorn, 2017
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What makes it work now? bang
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What makes it work now?

@ Huge research and progress in ML
@ Hardware developments - CPUs/GPUs/Storage technologies
@ Piles of data over the Internet

@ Collaborative development (open source tools and forums for
sharing/discussions, etc)

® Collective efforts from large institutions/corporations
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What makes it work now? IIT

o We have been doing a lot of ML already

o Taxonomy of ML concepts: Classification, regression, generative
models, clustering, etc.

Rich statistical formalizations: Bayesian estimation, PAC, etc.
Understood fundamentals: Bias-Variance, VC dimension, etc.
Good understanding of optimization

Efficient large-scale algorithms
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Deep Learning - practical perspective XXT

ATI

@ Doesn't require a deep mathematical grasp
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Deep Learning - practical perspective

@ Doesn’t require a deep mathematical grasp

@ Makes the design of large models a system/software development task
@ Leverages modern hardware

@ Doesn’t seem to plateau with more data

® Makes the trained models a commodity
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Compute getting cheaper X
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Storage getting cheaper
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AlexNet to AlphaGo: 300000X increase in
compute

Petaflogs/s-day (Training)
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Figure Credits: Radford, 2018. 1 petaflop/s-day &~ 100 GTX 1080 GPUs for a day,

~ 500kwh

Dr. Konda Reddy Mopuri

dlc-1.1/From ANNs to DL 28



Datasets

Data-set Year Nb. images Size
MNIST (classification) 1998 60K 12Mb
Caltech 101 (classification) 2003 9.1K 130Mb
Caltech 256 (classification) 2007 30K 1.2Gb
CIFAR10 (classification) 2009 60K 160Mb
ImageNet (classification) 2012 1.2M 150Gb
MS-COCO (segmentation) 2015 200K 32Gb
Cityscape (segmentation) 2016 25K 60Gb
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Figure Credits: Francois Fleuret
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Data-set Year Size
SST2 (sentiment analysis) 2013 20Mb
WMT-18 (translation) 2018 7Gb
OSCAR (language model) 2020 6Tb
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Implementation

Language(s) License Main backer
PyTorch Python, C++ BSD Facebook
TensorFlow Python, C++ Apache Google
JAX Python Apache Google
MXNet Python, C++, R, Scala Apache Amazon
CNTK Python, C++ MIT Microsoft
Torch Lua BSD Facebook
Theano Python BSD U. of Montreal
Caffe C++ BSD 2 clauses U. of CA, Berkeley
Figure Credits: Francois Fleuret
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We use PyTroch for this course

O PyTorch

http://pytorch.org
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