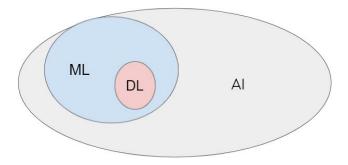


From Artificial Neural Networks to Deep Learning

Dr. Konda Reddy Mopuri kmopuri@iittp.ac.in Dept. of CSE, IIT Tirupati

dlc-1.1/From ANNs to DL

What is DL?


What is DL?

- ${\scriptstyle \bullet}$ Subset of ML that is essentially neural networks with more layers
- Crude attempt to imitate the humam brain in learning

What is DL?

- Classical ML: Handcrafted features + learnable model
- Need strong domain expertise

- Classical ML: Handcrafted features + learnable model
- Need strong domain expertise

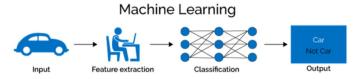


Figure credits: Jay Shaw & Quora

Dr. Konda Reddy Mopuri

dlc-1.1/From ANNs to DL

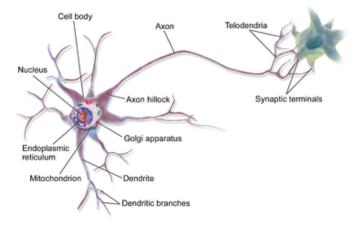
- Deep Learning: Deep stack of parameterized processing
- End-to-End learning

- Deep Learning: Deep stack of parameterized processing
- End-to-End learning

Figure credits: Jay Shaw & Quora

Dr. Konda Reddy Mopuri

dlc-1.1/From ANNs to DL



- ANNs predate some of the classical ML techniques
- We are now dealing with a new generation ANNs

Neuron

• About 100 billion neurons in human brain

Figure credits: Wikipedia

Dr. Konda Reddy Mopuri

dlc-1.1/From ANNs to DL

In McCulloch Pitts neuron (1943) - Threshold Logic Unit

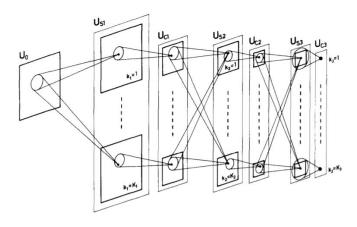
- In McCulloch Pitts neuron (1943) Threshold Logic Unit
- 2 Donald Hebb (1949) Hebbian Learning Principle

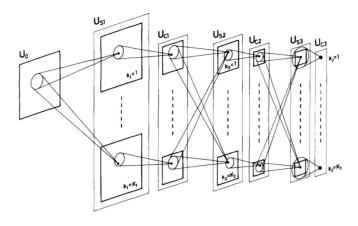
- In McCulloch Pitts neuron (1943) Threshold Logic Unit
- ② Donald Hebb (1949) Hebbian Learning Principle
- 3 Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)

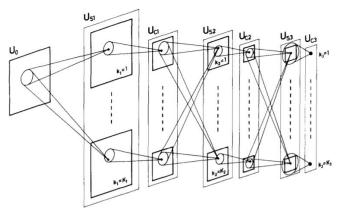
- In McCulloch Pitts neuron (1943) Threshold Logic Unit
- 2 Donald Hebb (1949) Hebbian Learning Principle
- 3 Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)
- Frank Rosenblatt (1958) created perceptron to classify 20X20 images

- In McCulloch Pitts neuron (1943) Threshold Logic Unit
- 2 Donald Hebb (1949) Hebbian Learning Principle
- 3 Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)
- Frank Rosenblatt (1958) created perceptron to classify 20X20 images
- David H Hubel and Torsten Wiesel (1959) demonstrated orientation selectivity and columnar organization in cat's visual cortex

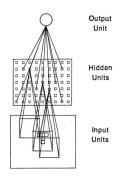
Backpropagation


• Paul Werbos (1982) proposed back-propagation for ANNs

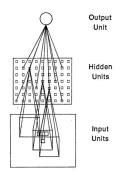

Neocognitron by Fukushima (1980)


- Neocognitron by Fukushima (1980)
- Implements the Hubel and Wiesel's principles

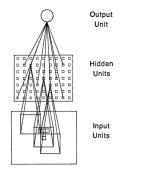
- Neocognitron by Fukushima (1980)
- Implements the Hubel and Wiesel's principles
- ③ Used for hand-written digit recognition



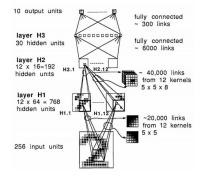
- Neocognitron by Fukushima (1980)
- Implements the Hubel and Wiesel's principles
- ③ Used for hand-written digit recognition
- ④ Viewed as precursor for the modern CNNs



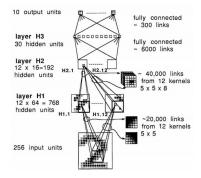
Network for TC problem



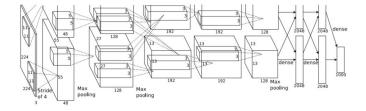
- Network for TC problem
- ② Rumelhart (1988) trained with backprop



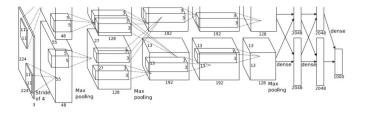
- Network for TC problem
- ② Rumelhart (1988) trained with backprop
- 3 Showed that hidden units learn meaningful representations



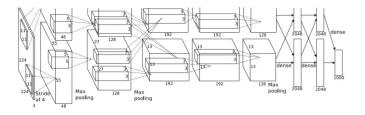
LeNet family (Lecun et al. 1989) is a "convent"



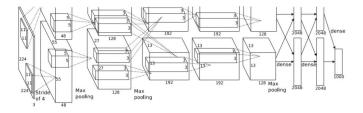
- LeNet family (Lecun et al. 1989) is a "convent"
- ② Very similar to modern architectures



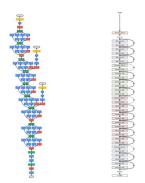
AlexNet (2012)



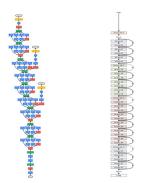
- AlexNet (2012)
- 2 Network similar to LeNet5, but of far greater size



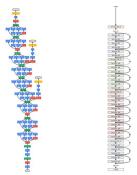
- AlexNet (2012)
- 2 Network similar to LeNet5, but of far greater size
- Implemented using GPUs



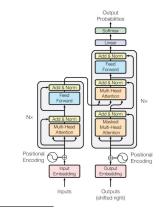
- AlexNet (2012)
- ② Network similar to LeNet5, but of far greater size
- Implemented using GPUs
- ④ Could beat the SoTA image classification methods by a large margin



I AlexNet initiated a trend of more complex and bigger architectures



- Initiated a trend of more complex and bigger architectures
- ② GoogLeNet (2015) contains "inception" modules



- Initiated a trend of more complex and bigger architectures
- ② GoogLeNet (2015) contains "inception" modules
- ③ ResNet (2015) introduced "skip connections" that facilitate training deeper architectures

Transformers (2017) are attention-based architectures

Figure credits: Vaswani et al., 2017

Dr. Konda Reddy Mopuri

dlc-1.1/From ANNs to DL

- Transformers (2017) are attention-based architectures
- ② Very popular in NLP, and CV

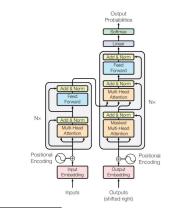
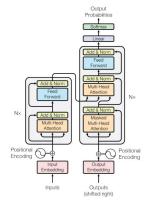



Figure credits: Vaswani et al., 2017

Dr. Konda Reddy Mopuri

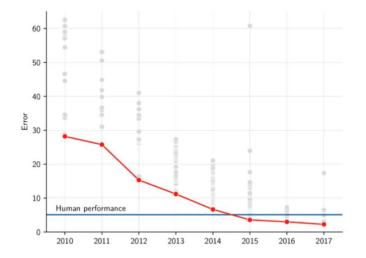
- Transformers (2017) are attention-based architectures
- ② Very popular in NLP, and CV
- ③ Some of these models are extremely large. GPT-3 has 3 billion parameters (Brown et al. 2020)

Figure credits: Vaswani et al., 2017

Deep Learning

I Natural generalization to ANNs - Doesn't differ much from the 90s NNs

Deep Learning


- In Natural generalization to ANNs Doesn't differ much from the 90s NNs
- ² Computational graph of tensor operations that take advantage of
 - Chain rule (back-propagation)
 - SGD
 - GPUs
 - Huge datasets
 - Convolutions, etc.

Deep Learning

• This generalization enables us to build complex networks that work with Images, text, speech and sequences and train end-to-end

ILSVRC Error

Figure credits: Gershgorn, 2017

Dr. Konda Reddy Mopuri

1 Huge research and progress in ML

- Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies

- 1 Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies
- ③ Piles of data over the Internet

- 1 Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies
- ③ Piles of data over the Internet
- Collaborative development (open source tools and forums for sharing/discussions, etc)

- 1 Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies
- ③ Piles of data over the Internet
- Collaborative development (open source tools and forums for sharing/discussions, etc)
- ⑤ Collective efforts from large institutions/corporations

- 1 Huge research and progress in ML
- 2 Hardware developments CPUs/GPUs/Storage technologies
- ③ Piles of data over the Internet
- Collaborative development (open source tools and forums for sharing/discussions, etc)
- ⑤ Collective efforts from large institutions/corporations

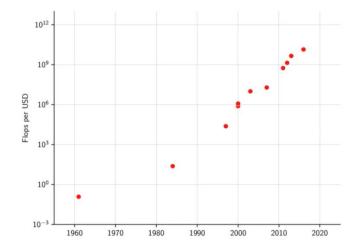
<u>6</u> ...

- We have been doing a lot of ML already
 - Taxonomy of ML concepts: Classification, regression, generative models, clustering, etc.
 - Rich statistical formalizations: Bayesian estimation, PAC, etc.
 - Understood fundamentals: Bias-Variance, VC dimension, etc.
 - Good understanding of optimization
 - Efficient large-scale algorithms

Doesn't require a deep mathematical grasp

- Doesn't require a deep mathematical grasp
- 2 Makes the design of large models a system/software development task

- Doesn't require a deep mathematical grasp
- 2 Makes the design of large models a system/software development task
- 3 Leverages modern hardware


- Doesn't require a deep mathematical grasp
- 2 Makes the design of large models a system/software development task
- 3 Leverages modern hardware
- ④ Doesn't seem to plateau with more data

- Doesn't require a deep mathematical grasp
- 2 Makes the design of large models a system/software development task
- 3 Leverages modern hardware
- ④ Doesn't seem to plateau with more data
- Makes the trained models a commodity

Compute getting cheaper

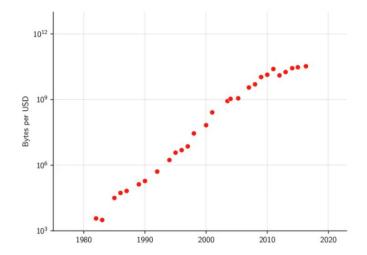


Figure Credits: Wikipedia

Dr. Konda Reddy Mopuri

Storage getting cheaper

Figure Credits: John C Mccallum

Dr. Konda Reddy Mopuri

AlexNet to AlphaGo: 300000X increase in compute

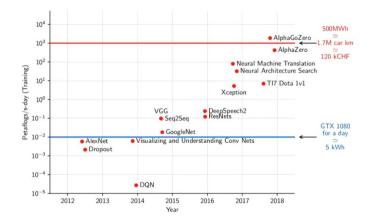


Figure Credits: Radford, 2018. 1 petaflop/s-day \approx 100 GTX 1080 GPUs for a day, \approx 500kwh

Dr. Konda Reddy Mopuri

Datasets

Data-set		Year	Nb. images	Size	
MNIST	(classification)	1998	60K	12Mb	-
Caltech 101	(classification)	2003	9.1K	130Mb	
Caltech 256	(classification)	2007	30K	1.2Gb	
CIFAR10	(classification)	2009	60K	160Mb	
ImageNet	(classification)	2012	1.2M	150Gb	
MS-COCO	(segmentation)	2015	200K	32Gb	
Cityscape	(segmentation)	2016	25K	60Gb	

Data-set		Year	Size
SST2	(sentiment analysis)	2013	20Mb
WMT-18	(translation)	2018	7Gb
OSCAR	(language model)	2020	6Tb

Figure Credits: François Fleuret

Implementation

	Language(s)	License	Main backer
PyTorch	Python, C++	BSD	Facebook
TensorFlow	Python, C++	Apache	Google
JAX	Python	Apache	Google
MXNet	Python, C++, R, Scala	Apache	Amazon
CNTK	Python, C++	MIT	Microsoft
Torch	Lua	BSD	Facebook
Theano	Python	BSD	U. of Montreal
Caffe	C++	BSD 2 clauses	U. of CA, Berkeley

Figure Credits: François Fleuret

Dr. Konda Reddy Mopuri

We use PyTroch for this course

O PyTorch

http://pytorch.org

Dr. Konda Reddy Mopuri